OpenJudge

1:集合

总时间限制:
1000ms
内存限制:
65536kB
描述

对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:

{3} 和 {1,2}
这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:

{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}

给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。

PROGRAM NAME: subset

输入
输入文件只有一行,且只有一个整数N
输出
输出划分方案总数,如果不存在则输出0。
样例输入
7
样例输出
4
全局题号
6529
提交次数
45
尝试人数
12
通过人数
9